Mark scheme

Q	uestion	Answer/Indicative content	Marks	Guid	ance
1		Rotation 90° [clockwise] or 270° anticlockwise (-1, 3)	2 1 1	B1 for triangle or vertices at (-1, 5), (-1, 8) and (3, 5)	Must be rotate or rotation, not turn etc Condone -1, 3 Condone an answer [for full or part marks] that repeats the given transformation i.e. rotation, 90° [clockwise], (-1, 3) followed by translation (4/-9) In other cases: If more than one transformation stated then max award is the B1 for the triangle or vertices if drawn on the grid
		Total	4		
2		[<i>h</i> =] 4 [<i>A</i> =] 2646 with correct working	6	M2 for $\sqrt[3]{\frac{3430}{80}}$ or 3.5 oe or $\sqrt[3]{\frac{80}{3430}}$	"Correct working" requires evidence of at least M2

			1
		or $\frac{2}{7}$ oe	
		or M1 for	
		$\frac{3430}{80}$ or 42.875 oe or $\frac{80}{3430}$ or	
		$\frac{8}{343}$ oe	
		AND	
		B2 for [<i>h</i> =] 4	
		or M1 for $\frac{14}{3.5}$ oe	
		AND	e.g. $14 \times \frac{2}{7}$
		B2 for [A =] 2646	
			e.g. 216 ÷ $(their \frac{2}{7})^2$
			Note :
			Use of scale ^{₹/3430}
			factor = ₹80 often
			leads to accuracy
			errors so award
		or M1 for 216 × (their 3.5) ² oe	M2 for ^{₹3430} / ₈₀
			M1 for their3.5 oe (penalise accuracy
			once here at first occurrence)
			M1 A1 for $216 \times (their 3.5)^2 = answer to A$

					involving a rounding error
		Total	6		
3		Vector a – b correctly drawn with correct direction arrow on the resultant	S	B2 for a – b correctly drawn but with an incorrect or no direction arrow or B1 for their	Full marks may be within a triangle with correct direction arrow B2 may be within a triangle with no direction arrow[s]
		Total	3		
4		20 nfww	3	M2 for $\sqrt[3]{27} \times \sqrt[3]{64}$ oe or M1 for $\sqrt[3]{27} : \sqrt[3]{64}$ soi or for $\frac{27}{64} = \frac{15^3}{x^3}$ oe or better	M2 implied by ratio 15 : 20 or 20 : 15 M1 accept in any order, e.g. 4 : 3 oe accept as fraction e.g. $\frac{3}{4}$ oe or $\frac{4}{3}$
		Total	3		
5	а	Rotation about the origin and	2		

		20° anticlockwise oe		B1 for each	Accept 0, 0 or O for origin More than one transformation scores zero marks Extra properties treat as choice Accept 340° clockwise
	b	(6, 1) and (6, 3)	1		Condone omission of bracket[s] if otherwise correct If additional coordinates listed then scores zero
		Total	3		
6		$\binom{-1}{3}$	2	B1 for answer $\binom{-1}{k}$ or $\binom{k}{3}$	No fraction line in vector – but penalise 1 mark only in (a) and (b)
		Total	2		
7		[<i>h</i> =] 4.8 [<i>A</i> =] 1350 with correct working	6	M2 for $\sqrt[3]{\frac{3750}{240}}$ or 2.5 oe or $\sqrt[3]{\frac{240}{3750}}$ or 0.4 oe or M1 for $\frac{3750}{240}$ or 0.064 oe B2 for $[h =]$ 4.8 or M1 for $\frac{12}{2.5}$ oe B2 for $[A =]$ 1350 or M1 for 216 × $(their\ 2.5)^2$ oe	"Correct working" requires evidence of at least M2 e.g. 12 × 0.4 e.g. 216 ÷ (their 0.4)² Note: Use of scale factor = \frac{\frac{1}{2750}}{\frac{1}{220}} \text{often leads to accuracy errors so award}

				volume as 3750 then they would uthe missing value	the scale factor of - 240 or 15.625 and use this to calculate us. They needed to scale factor of length
		Total	6		
8		Correct response e.g. a vector $\binom{p}{q}$ where $p^2 + q^2 = 10$ or FT their (a)	1FT	Allow correct or FT their (a) Must be numeric and column vector	e.g. $\begin{pmatrix} \pm 1 \\ \pm 3 \end{pmatrix} \text{ or } \begin{pmatrix} \pm 3 \\ \pm 1 \end{pmatrix} \text{ or } \begin{pmatrix} \sqrt{10} \\ 0 \end{pmatrix}$ etc but not <i>their</i> $\begin{pmatrix} -1 \\ 3 \end{pmatrix} \text{ from (a)}$
		Total	1		
9		Rotation 90° [anticlockwise] or 270° clockwise (-1, 3)	2 1 1	B1 for triangle or vertices at (−5, 1), (−1, 1) and (−1, −2)	Must be rotate or rotation, not turn etc Condone -1, 3 Condone an answer [for full or part marks] that repeats the given transformation ie rotation, 90°

In other cases If more than of transformation stated then m award is the ten the triangle of vertices if dra on the grid	s: one n ax 31 for
Examiner's Comments The candidates that were most successful translated triangle B to give the image of triangle A a transformation T. For full marks needed to be stated as a rotatio both the centre and angle being	tter T n with
The most common error was to more than one transformation in answer, for example, rotate 90° anticlockwise about the origin at then translate by (10/-1). Such atter almost always scored zero, although the still available if the imagent triangle A after transformation T been shown.	the nd mpts ough e of
Total 4	
10 a Enlargement [centre] (-1, 0) [sf] -2 Enlargement 3 B1 for each If more that transformation award 0	
Reflection $y = -x$ M1 for correct final image of their starting object If more that transformat award only M1 if application object If using rectangle T image will I vertices at -1) $(-1, -4)$ -1) and (-2)	tion cable the nave (-1,
Total 6	

11			BMD and [diameter bisects chord] so CD [diameter] is perpendicular to AB [chord] [MD is] common SAS	1 1 1		Also accept DMB Accept e.g. 'shared'
			Total	3		
12	а		(3 ₁₀)	2	B1 for either 3 or 10 in correct position or for $\binom{6}{4}$ $\binom{3}{6}$ or $\binom{6}{4}$ $\binom{3}{6}$	Not for $\left(\frac{3}{10}\right)$
	b		(1 ₃)	1		Not for $\left(\frac{1}{3}\right)$
			Total	3		
13	а		Rotation about the origin and 50° clockwise oe	2	B1 for each Examiner's Comm	
				Candidates answer Most gave a complethe transformation. partial credit for eith around the correct the correct angle arotation.	ete description of Others were given ner stating rotation centre, or for giving	
	b		(1, 4) and (5, 4)	1		Condone omission of

				bracket[s] if otherwise correct If additional coordinates listed then scores zero
				Examiner's Comments There were many correct responses, but a significant number of candidates seemed uncertain with the term 'invariant'. Answers with one coordinate, four coordinates and coordinates other than the four vertices of the rectangle were given by some.
		Total	3	
14	а	$\begin{pmatrix} -3 \\ 1 \end{pmatrix}$	2	B1 for answer (-3)

b	Correct response e.g. a vector $\binom{p}{q}$ where $p^2 + q^2 = 10$ or FT <i>their</i> (a)	1FT	Allow correct or FT their (a) Must be numeric and column vector Examiner's Comm This question was a by almost all candiderrors that were made and subtracted one component, presummisconception that the length while character or the length while	answered correctly dates. Of the few ade, some one to a component from the other hably with a this would retain
С	Vector a – b correctly drawn with correct direction arrow on the resultant	3	B2 for $\mathbf{a} - \mathbf{b}$ correctly drawn but with an incorrect or no direction arrow or or $\mathbf{B1}$ for their $\binom{-3}{1} - \binom{0}{-2}_{Or} \binom{-3}{3}$ or for drawing $\binom{-3}{1} - \binom{0}{-2}_{Oe}$ on grid as two sides of a potential triangle (condone missing/wrong arrows) If 0 scored, $\mathbf{SC1}$ for vector $\binom{-3}{5}$ drawn on grid with correct direction arrow	Full marks may be within a triangle with correct direction arrow B2 may be within a triangle with no direction arrow[s]

Candidates found this more challenging than parts (a) and (b). Those candidates that drew the vectors **a** and **b** to show **a** + (**b**) were often successful with this question. Some candidates drew these two vectors, but did not then join them together to make the resultant vector $\mathbf{a} - \mathbf{b}$. Those that wrote down the subtraction of the column vectors were also generally successful, although there were some sign errors seen when performing the calculation. Some correctly showed a line for a **b**, but did not include a direction arrow; these were given 2 out of the 3 marks available

Assessment for learning

Candidates should be encouraged to show the steps in their method (either drawing or calculation), so that part marks can still be given if an error is made. When drawing the difference of two vectors $\mathbf{a} - \mathbf{b}$, consider it as $\mathbf{a} + (\mathbf{b})$ and hence draw \mathbf{a} followed by (\mathbf{b}) .

Misconception

A vector must have a directional arrow. It is not sufficient to just draw a straight line.

Exemplar 1

In this example the candidate draws a triangle of vectors, but does not place a direction arrow on the vector $\mathbf{a} - \mathbf{b}$.

					The response is otherwise correct, so 2 out of the 3 marks are given.	
			Total	6		
					M2 for $\frac{6}{\sqrt[3]{8}} \times \sqrt[3]{27}$ oe or M1 for $\sqrt[3]{8} : \sqrt[3]{27}$ soi or for $\frac{8}{27} = \frac{6^3}{x^3}$ oe or better M2 implied by ratio 6 : 9 or 9 : 6 M1 accept in any order, e.g. 3 : 2 oe accept as fraction e.g. $\frac{3}{3}$ oe or $\frac{3}{2}$ oe	
15			9 nfww	3	Most candidates found this question challenging. The most common error was to just directly apply the given ratio to the height of prism A, leading to $6 \times \frac{27}{8}$ or similar. Those that found the correct linear scale factor (2:3) usually scored all 3 marks. Those that converted $\frac{27}{8}$ or $\frac{8}{27}$ to a decimal often had difficulty in then finding the cube root, with some candidates attempting the square root or dividing by 3 instead.	
				Misconception For similar shapes, the ratio of volumes is not equal to the ratio of		
					lengths. Candidates were often unable to establish the correct relationship between the volume scale factor and the length scale factor.	
			Total	3		
16	а		Translation $\binom{-5}{6}$	1 1	Marks spoilt if extra transformations Do not accept	

					coordinates, with a fraction bar or in words
	b	5 4 5 6 5 5 5 4 5 6 5 5 5 5 5 5 5 5 5 5	2	B1 for correct orientation but wrong location or for correct reflection but in $x = -1$	
		Total	4		
17		Angle AEB = angle DEC and [vertically] opposite Angle ABE = angle ECD and same segment Angle BAE = angle EDC and same segment [Triangle AEB is similar to triangle DEC] [corresponding] angles are equal oe or AAA oe OR After two pairs of angles with reasons gives 3 rd pair of equal angles with a reason	M2 A1	For M2 only two of the three statements and reasons are required M1 for one pair of angles with a reason With no errors or incorrect statements seen If 0 scored, SC1 for at least two correct pairs of angles identified with no / incorrect reasons	Allow any unambiguous labelling for angles e.g. ABE or ABD or B, but not E For reason accept e.g. opp ∠'s For same segment, accept same arc but not same chord Accept 3 rd angle in triangle oe for reason with final angle if other two given correctly with correct reasons Accept they have the 'same/equal angles' oe, AA and similar. Accept symbol ~ for similar Condone angles identified on diagram for SC1

		Total	3		
18		43.2 to 43.3 nfww	4	M3 for $30 \times \sqrt[3]{1.5}$ oe or $30 \div \sqrt[3]{1.5}$ oe or $30 \div \sqrt[3]{0.5}$ oe soi by 1.44 to 1.45 or $\sqrt[3]{1.5}$ oe soi by 0.69 to 0.70 or $\frac{h^3}{30^5} = \frac{1.5}{0.5}$ oe or M1 for $\frac{1.5}{0.5}$ oe soi by 3 or $\frac{0.5}{1.5}$ oe soi by 3	Accept 43 as final answer after M3 May see as length ratio, e.g. M2 for ₹1.5 : ₹0.5 soi by 1.1447() to 1.145 : 0.7937() to 0.794 May see as volume ratio, e.g. M1 for 1.5 : 0.5 oe May also be seen as part of wrong approach e.g. 30 × 3 scores M1
		Total	4		
19		Rotation [centre] (0, 2) 180° OR Enlargement [centre] (0, 2) [sf =] -1	3	If 0 scored M1 for the correct	More than one transformation scores 0 or M1 Ignore direction of angle
		Total	3		
20	а	$\overline{\text{cN}} = \mathbf{a} - \frac{3}{5}^{\text{c}}$ oe	M1 M1		

			B1 A1		
		$\overrightarrow{CP} = \frac{5}{3} = \mathbf{a} - \mathbf{c}$ oe or $\overrightarrow{NP} = \frac{2}{3}\mathbf{a} - \frac{2}{5}\mathbf{c}$ oe $\overrightarrow{OP} = \frac{5}{3}\mathbf{a}$ oe or $\overrightarrow{AP} = \frac{2}{3}\mathbf{a}$ Correct conclusion		or FT (their (a)(ii)) – c must be vector route in terms of a and/or c or FT CP = 5/3 (their CN) must be vector route in terms of a and/or c	Condone omission of vector arrows etc throughout question Allow CN, CP and NP both unsimplified and isw attempts to simplify
		or op is a multiple of oa oe		or FT NP = 2/3 (their CN) must be vector route in terms of a and/or c Alternative method (using similar triangles NCB and NPA) M2 for AP = 2/3 a oe	NP may be embedded in working leading to OP when e.g. they do ON + NP
					Award B1 for e.g. $OP = \mathbf{c} + \frac{5}{3}\mathbf{a} - \mathbf{c}$ Accept $OAP = \frac{5}{3}$ a oe
				Dep on M2B1	Accept correct equivalent vector conclusions involving AP and OP or OA
b	İ	a + c	1		Not A + C, but if use of capitals in other parts of question, penalise the first occurrence only Accept c + a
	ii	a + ² / ₅ cfinal answer	2	M1 for correct route	M1 for e.g. OA + AN, OC + a –

				or for $\overline{AN} = \frac{2}{5}c$ or $\overline{BN} = \frac{3}{5}c$	NB Condone poor vector notation for method Could be written on diagram
		Total	7		
21		64 with correct working	4	M3 for $[8 \times]$ or 2^3 oe or M2 for $\sqrt{\frac{48}{12}}$ or $\sqrt{4}$ oe implied by 2 or M1 for $\frac{48}{12}$ oe implied by 4 Alternative method: M3 for $[8 \div]$ $\sqrt{\frac{12}{48}}$ or $\sqrt{\frac{12}{48}}$ or or M1 for $\sqrt{\frac{12}{48}}$ or or M1 for $\sqrt{\frac{12}{48}}$ oe implied by $\sqrt{\frac{1}{4}}$ oe implied by $\sqrt{\frac{1}{4}}$ oe implied by $\sqrt{\frac{1}{4}}$ or 0.25 If 0 scored, instead award SC1 for answer 64 with no or insufficient working	"correct working" requires evidence of at least M2 Accept ratios M3 for 8 : 64 oe or M2 for 2 : 4 oe or M1 for 4 : 16 oe
		Total	4		
22		Yes SAS Yes RHS No	3	B2 for two correct rows or B1 for one correct row	Accept ticks and crosses For "No" ignore reason

		Total	3		
23	а	Triangle drawn with vertices at (2, 6), (2, -4), (7, -4)	3	B2 for scale factor 2.5 but wrong centre or for correct centre but wrong scale factor or for 3 correct plots but no triangle drawn OR B1 for 2 vertices correct	Condone freehand mark intention e.g. B2 for a translation of the correct image For B2 and B1 image must fit entirely on grid
	b	Rotation 180 (-3, 1)	2 1 1	or B1 for triangle or vertices at (⁻ 2, 2), (⁻ 2, 6), (⁻ 4, 6)	Not turn, must be rotate or rotation Accept: Enlargement 2 [Scale factor =] -1 1 [Centre] (-3, 1) 1 Condone -3, 1 Allow as answer [full and part marks] Rotation, 180, (-3, 1) followed by/and reflection in y-axis (repeat of info in question) but in other cases If more than one other transformation given then B1 maximum if the triangle drawn on the grid e.g. Rotation 180 then

				translate 6 down is two transformations Extra properties treat as choice
		Total	7	
24		540	2	M1 for 3 ³ oe
		Total	2	
		ODB or BDO and alternate		
25		BOD or DOB and vertically opposite oe Correct reason e.g. AAA or both triangles have the same angles oe	1 1 1	Accept CDB, etc.
		Total	3	
26	а	$\binom{1}{3}$	1	Not for (\frac{1}{3}) Examiner's Comments This was well answered; most candidates gave the correct vector in the required form.
	b	(3 ₁₁)	2	B1 for either 3 or 11 in correct position or for $\binom{5}{3}+\binom{-2}{8}$ or $\binom{5}{3}-\binom{2}{-8}$ Examiner's Comments This was well answered by many candidates. Others found it more challenging. For some, there was more success with the horizontal component of the vector than the

				vertical one where the	
		Total	3		
				B1 for each	If more than one transformation award 0
27	а	Enlargement [centre] (-1,-1) [sf] -2	3	Examiner's Commentary Despite the clear que a single transformation candidates gave a do transformation usually enlargement and a rogave the response of enlargement and wou correct centre, but the was the most difficult out.	stion demand for on, most ouble y involving an tation. Some a single ald often give the e scale factor
	b	Reflection $y = -x$	2 1	M1 for correct final image of their starting object	If more than one transformation award only M1 if applicable If using triangle T the image will have vertices at (-1, -1) (-1, -4) and (-2, -1)
				Examiner's Comment Few candidates attenthe question, despite having been set many previously. The best striangle T and operate transformations on it, help them find the equation transformation. Again double transformation clear question demands	npted this part of similar questions y times solutions used both then used that to uivalent single n despite the

		Total	6		
					Also accept TMQ accept e.g. 'shared'
28		QMT and [diameter bisects chord] so VT [diameter] is perpendicular to PQ [chord] [MT is] common SAS	1 1 1	Examiner's Common This was meant to be completed proof. Or candidates realised refer to angle to angular part as most candidate instead and most did reason why these two equal. However, man correct term for side 'common' or 'shared popular words. Also realised it was SAS reason for congruent a right angle some of instead.	te a partly ally a few they needed to alle QMT in the first ates put 90° d not know the vo angles were ny used the MT with all being the most many candidates that was the all ce. As there was
		Total	3		
		Rotation		B1 for each part	More than one transformation scores 0 or M1 Ignore direction of angle
29		[centre] (2, 1) 180° OR Enlargement [centre] (2,1) [sf =] -1	3	If 0 scored M1 for the correct object after rotation or after both transformations	g -
				Examiner's Common Many candidates did question correctly. S	d answer this

				used two transformations in their description, despite the request in bold for a single transformation (most often involving a translation in their description of their combined transformation). Some of these did correctly draw one or both images on the diagram and gained credit.	
		Total	3		
				M3 for $35 \times \sqrt[3]{\frac{2}{05}}$ oe or $35 \div \sqrt[3]{\frac{0.5}{2}}$ oe	Accept 56 as final answer after M3
				M2 for $\sqrt[3]{\frac{2}{0.5}}$ oe soi by 1.58 to 1.59	May see as length ratio, eg M2 for ³ √2: ¹ √0.5 soi by
				or $\sqrt[3]{\frac{0.5}{2}}$ oe soi by 0.62 to 0.63	1.2599() to 1.26: 0.7937() to 0.794
				or $\frac{h^3}{35^3} = \frac{2}{0.5}$ oe	
30		55.5 to 55.6 nfww	4	or	
				M1 for $\frac{2}{05}$ oe soi by 4	May see as volume ratio, eg. M1 for 2 : 0.5 oe
				or $\frac{0.5}{2}$ oe soi by $\frac{1}{4}$	May also be seen as part of wrong approach
					eg. 35×4 scores M1
				If 0 scored then SC1 for 140 as final answer	
				Examiner's Comm	<u>nents</u>

					There were only real seen here, the wrong and the correct answ 55.6. Unfortunately, that occurred most of Perhaps the fact that given in litres meant candidates did not lit volume/length scale. Most candidates conthe volume scale fact about 1/4 of them the root and were succefull marks. The rest of the wrong answer of A few candidates muget 2 and then multipreach 70 cm. There number of candidate rooted or cubed 4 instructions.	g answer of 140 ver of 55.5 to 140 was the one if the time. It the volume was that some ink this to being a factor question. rectly obtained itor of 4, but only en found the cube ssful in achieving did 35 × 4, getting 140. Illiplied 0.5 by 4 to blied 35 by 2 to was a very small is who square
			Total	4		
31	α	i	a + c	1		Not A + C, but if use of capitals in other parts of question, penalise the first occurrence only Accept c + a
31	а	1	a + c	1	Examiner's Comme	ante
					A significant number not attempt this part Of those candidates the majority did give in terms of a and c . (answers included ac column vectors such	of candidates did involving vectors. that attempted it, a correct answer Common incorrect a + 8, and
		ii	$a + \frac{3}{8}c$ final answer	2	M1 for correct route	M1 for e.g. OA + AN, OC + a – NB

			or for $\overline{AN} = \frac{3}{8}c$ or $\overline{BN} = -\frac{5}{8}c$	Condone poor vector notation for method Could be written on diagram
			Examiner's Common Candidates who attended question often gave The most common of a + \frac{3}{8}, a + 3c, a + \frac{1}{3} and a + \frac{3}{6}c candidates wrote a content for ON or gave within their working mark was given).	omitted, but those mpted the a correct answer. errors included Only a few correct vector $\overline{AN} = \frac{3}{8}c \text{ or } \overline{BN} = -\frac{5}{8}c$
			When attempting quinvolving routes with vector, candidates sithe vector route in telline segments first, examiners here coumark for a correct roworking.	more than one hould always write erms of the given e.g. $\overline{\text{ON}} = \overline{\text{OA}} + \overline{\text{AN}}$. Id award a part
			Candidates should r AN: NB = 3:5, ther	ecognise that if
b	$\overrightarrow{CN} = \mathbf{a} - \frac{5}{8}\mathbf{c}$ oe $\overrightarrow{CP} = \frac{8}{5}\mathbf{a} - \mathbf{c}$ oe or $\overrightarrow{NP} = \frac{3}{5}\mathbf{a} - \frac{3}{8}\mathbf{c}$ oe $\overrightarrow{OP} = \frac{8}{5}\mathbf{a}$ oe or $\overrightarrow{AP} = \frac{3}{5}\mathbf{a}$	M1 M1 B1 A1	or FT (<i>their</i> (a)(ii)) – c must be vector route	Condone omission of vector arrows etc throughout question Allow CN, CP and NP both unsimplified and

	Correct conclusion □P = ⁸ / ₅ □A oe or □P is a multiple □A oe	in terms of \mathbf{a} and/or \mathbf{c} or $FT \ \overline{CP} = \frac{8}{5} \ (their \ \overline{CN})$ must be vector route in terms of \mathbf{a} and/or \mathbf{c} or $FT \ \overline{NP} = \frac{3}{5} \ (their \ \overline{CN})$ must be vector route in terms of \mathbf{a} and/or \mathbf{c}	isw attempts to simplify NP may be embedded in working leading to OP when e.g. they do ON + NP
		Alt method (using similar triangles NCB and NPA)	
		M2 for $\overrightarrow{AP} = \frac{3}{5}a$ oe	
		Dep on M2B1	Award B1 for e.g. OP = c + \(\frac{8}{5} a - c \) Accept OAP = \(\frac{8}{5} a \) oe Accept correct equivalent vector conclusions involving AP and OP or OA
		This question was a almost all candidates candidates either dipart at all, or annota diagram and wrote The candidates who on this question attest successfully, to find the successfully, to find the successfully in terms were then able to slope \$\frac{8}{5}a\$ or \$\overline{AP} = \frac{3}{5}a\$. Very for articulate the reather final mark, to shop or \$\overline{AP}\$ and \$\overline{OA}\$.	a challenge for es. The majority of dn't attempt this ated P on the nothing further. The made progress empted, often the vectors of a and c. Some how that the were then able soning needed for low that OAP is a

		Total	7	
32	а	Translation $\binom{5}{-6}$	1 1	Marks spoilt if extra transformations Do not accept coordinates, with a fraction bar or in words Examiner's Comments Many candidates did not state 'translation' or give the correct vector. Descriptions of a movement were common, while 'transformation', 'reflection' and incorrect vector notation were often seen.
	b		2	B1 for correct orientation but wrong location or for correct reflection but in $y = ^{-1}$ Examiner's Comments Some correct reflections were seen but many candidates attempted a reflection in $y = ^{-1}$, and often completed it incorrectly. Some responses showed a translation of . Assessment for learning Transformation questions are often a good source of procedural marks for Higher tier candidates. Knowledge of the lines $x = k$ and $y = k$ is important. They can be assessed, either within

			geometry, as here, on algebraic graphs	=
	Total	4		
33	Angle AED = angle BEC and [vertically] opposite Angle DAE = angle EBC and same segment Angle ADE = angle ECB and same segment [Triangle AED is similar to triangle BEC] [corresponding] angles are equal oe or AAA oe OR After two pairs of angles with reasons gives 3rd pair of equal angles with a reason	M2 A1	For M2 only two of the three statements and reasons are required M1 for one pair of angles with a reason With no errors or incorrect statements seen If 0 scored, SC1 for at least two correct pairs of angles identified with no / incorrect reasons Examiner's Comm	Allow any unambiguous labelling for angles e.g. DAE or DAC or A, but not E For reason accept e.g. opp ∠'s For same segment, accept same arc but not same chord Accept 3 rd angle in triangle oe for reason with final angle if other two given correctly with correct reasons Accept they have the 'same/equal angles' oe, AA and similar. Accept symbol ~ for similar Condone angles identified on diagram for SC1

				This question proved challenging for all candidates and was omitted by a number of candidates. A few realised that finding equal pairs of angles was the strategy. More able candidates attempted to work systematically, line by line, giving a pair of angles with a reason. Angle AED = angle BEC with the reason, [vertically] opposite, earned partial credit for some candidates, but the majority were unable to give correct geometric reasons for the other equal pairs of angles. A number gave incorrect angle pairs, such as angle A = angle C, perhaps thinking they were alternate angles. Some also referred to lengths and gave reasons of congruency, such as SAS.	
		Total	3		
34		125 with correct working	4	M3 for $[8 \times]$ $(\sqrt{\frac{25}{12}})^3$ or 2.53 oe or M2 for $\sqrt{\frac{75}{12}}$ or $\sqrt{6.25}$ oe implied by 2.5 or 5/2 or M1 for $\frac{75}{12}$ oe implied by 6.25 Alternative method: M3 for $[8 +]$ $(\sqrt{\frac{12}{75}})^3$ or 0.43 oe or 0.43 oe or	"correct working" requires evidence of at least M2 Accept ratios M3 for 8: 125 oe or M2 for 2: 5 oe or M1 for 4: 25 oe

				implied by 0.4 or	
				2/5 or M1 for ¹² / ₇₅ oe implied by 0.16	
				If 0 scored, instead award SC1 for answer 125 with no or insufficient working	
				Examiner's Comm	<u>nents</u>
				Examiner's Comments Some good solutions were seen from candidates who realised they needed to find the area scale factor, then the linear scale factor and then the volume scale factor. A few of these candidates gave this volume scale factor, 15.625, as their final answer and so only scored 3 marks. Some candidates set out their work in a table, which helped them to realise they were working initially with an area scale factor. Many candidates multiplied the volume of pyramid A by the area scale factor of 6.25 to give an incorrect answer of 50 cm². Other candidates reached the same answer via ratios with the value of the volume of pyramid A being ² / ₃ of the value of its area.	
				Some candidates the length scale factor as their volume scale	and so used 6.25 ³
		Total	4		
35		Yes SSS Yes ASA No	3	B2 for two correct rows or B1 for one correct row	Accept ticks and crosses For "No" ignore reason

				Examiner's Comments For the first pair of triangles, most candidates correctly answered "yes" and gave "SSS" as the reason. Only about half of candidates answered "yes" with the correct reason of "ASA" for the second pair of triangles. "No" was quite frequent and "RHS" was also a common incorrect reason. Only the more able candidates correctly answered "no" for the third pair of triangles.	
		Total	3		
				B2 for scale factor 1.5 but wrong centre or for correct centre but wrong scale factor or for 3 correct plots but no triangle drawn OR B1 for 2 vertices correct	Condone freehand mark intention e.g. B2 for a translation of the correct image For B2 and B1 image must fit entirely on grid
36	а	Triangle drawn with vertices at (1, 0), (1, 6), (4, 6)	3	Examiner's Comments This was generally well answered. Most candidates could enlarge the triangle by scale factor 1.5 but not always using the correct centre of enlargement. Those that did a correct enlargement from a wrong centre scored 2 marks and this was the most common award. A few used the ray method and were inaccurate with on or more of their plots and a few used the correct centre but enlarged with the wrong scale factor. Assessment for learning	

			When using the ray method for enlargement, always check accuracy by counting squares from the centre to the image and by checking that the enlarged shape has consistent lengths with the required scale factor.		
b	Rotation 180 (1, 3)	2 1	or B1 for triangle or vertices at (2, 2), (4, 2), (4, 6)	Not turn, must be rotate or rotation Accept Enlargement 2 [Scale factor =] 1 [Centre] (1, 3) 1 Condone 1, 3 Allow as answer [full and part marks] Rotation, 180, (1, 3) followed by/and reflection in x-axis (repeat of info in question) but in other cases If more than one other transformation given then B1 maximum if the triangle drawn on the grid e.g. Rotation 180 then move 1 across, up 2 is two transformations Extra properties treat as choice	
			The candidates that successful here rev		

					reflection in the <i>x</i> -axis from triangle B to draw the image of A after the first transformation. To describe the rotation, the centre and angle of rotation was needed and some, having recognised rotation, either made an error or omitted one of these properties. The most common error was to give more than one transformation for the answer, for example, rotate 180° then translate and in these cases 0 marks were given for the description.	
			Total	7		
			Triangle at (⁻ 8, 6), (⁻ 8, 2), (0, 6)	2	B1 for reflection in $x = k$ or in $y = 0$	Mark intention, condoning freehand
07					Examiner's Comments	
37	а				? Misconc	eption
					In this part, candidates were required to reflect a triangle in the line $x = 0$ but some candidates reflected in the xaxis.	
		1	Enlargement	3	B1 for each element	Marks spoilt if extra transformations Condone omission of brackets Accept centre as a vector
	b		4or 0.25		Examiner's Comn	nents
			(υ, ο)		AfL The three marks ave for describing fully transformation proving the second control of the second control	vailable in this part a single

				three pieces of informative scale factor. May were not full, and a second transformative described by the casuse appropriate term "reduction", "shrink" not accepted.	ent, the centre, and any responses few included a ion, often andidate as a are expected to minology, and so
		Total	5		
38		400	2	M1 for 2³ oe Examiner's Comments Most candidates did not realise in this question that a volume scale factor should be used and that this is the length scale factor cubed. It was very common to have an answer of 100 from 50 × 2.	
		Total	2		
39		AED or DEA and corresponding common oe correct reason e.g. AAA or both triangles have the same angles oe	111		accept CED, DEC accept "same as angle DAE" oe ignore any reasons
		Total	3		